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Abstract

Solutions of the equation c2u(4) + zu(2) + au(l) + a1u - 2 2zu = 0, where

a g 2 are constants, 2  1, and z is the independent variable are obtained

using the Laplace integral technique. This equation describes the propagation

of high frequency electrostatic waves near plasma resonance in a magnetized

plasma with a longitudinal density gradient and is a generalization of an

equation studied by Wasow and by Rabenstein in the context of boundary layer

phenomena. The solutions of this fourth order equation in which the associated

second order equation (i.e., e2 = 0) exhibits both a singularity (at z = 0) and

a turning point (at z = a1/a22) fall readily into two classes. One class re-

sembles Airy functions and exists only for e2 not equal to zero. In the other

class, the solutions are related to confluent hypergeometric functions and can

be viewed as solutions of the second order equation with small corrections

proportional to e2 . Using the integral representations of solutions it is

demonstrated that each class of solutions can generate the other when the inde-

pendent variable crosses the singular point. This is the physical phenomenon of

mode conversion. Asymptotic descriptions of both classes of solutions are given

and the form of the solutions near the singular point is expressed as a power

series.

n
PACS number: 52.35.Fp
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1. Introduction

This paper investigates the solutions of a fourth order differential

equation which arises in the description of high frequency electrostatic waves

near plasma resonance in a magnetized plasma with a zero order density gradient

along the magnetic field. The behavior of the electrostatic potential is

described by Poisson's equation which can be written as

V K • = i(W/c)V•K•A , (1.1)

where K is the plasma dielectric tensor, € the electric potential, A the vector

potential, w the angular frequency of oscillation and c the speed of light.

A harmonic time dependence of the form exp(-iwt) is assumed. In (1.1) the term

containing the vector potential can be viewed as a driving source term, which

can be physically identified with an externally launched electromagnetic wave,

as might be the case in a laboratory or ionospheric experiment. From this point

of view (1.1) can be solved for interesting physical applications by obtaining

the appropriate Green's function, a task which requires knowledge of the solu-

tions of the associated homogeneous equation

V K K * V= 0 . (1.2)

When thermal corrections associated with the motion of plasma along the magnetic

field are retained, the plasma dielectric tensor becomes a second order differential

1
operator and (1.2) can be written in dimensionless form as

E2u(4) + ZU(2) + au (1) + alu - 82
2 ZU = 0 . (1.3)

%"t
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To obtain (1.3) it is assumed that the plasma has a linear density gradient

with scale length L along the magnetic field direction. This assumption i5

appropriate for many physical applications and retains the important physical

processes. In (1.3) u is the electric potential suitably normalized, and

z is the distance along the magnetic field normalized to the density scale

length L. The small parameter

E2  (kDL) (1.4)

in which kD is the Debye wave number. For typical ionospheric plasmas the

parameter s2 can be less than 10-6. The other parameters in the plasma have

the values

a =l1 ; (1.5)

1= (k L)2 e 2/(w2 - f 2) (1.6)

22 (uW/Q )2e,1.)
e

where Qe is the electron cyclotron angular frequency and ki is the fixed wavee

number perpendicular to the magnetic field. In obtaining solutions of (1.3) we

do not restrict ourselves to the parameter values given in (1.5)-(1.7). We do,

however, assume that all parameters are real and that E2, 61 and 2 are posi-

tive. These assumptions apply to a plasma in which the wave frequency is

larger than the electron gyrofrequency (i.e., w > Q e).

4!
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Equation (1.3) supports two distinct classes of solutions: thermal

modes and cold modes. The first of these classes represents short wavelength

D
modes in the sense that these solutions exist only when 2 (and hence kD-2)

is not zero. The prototype equation for this class is obtained from (1.3)

by setting a, and 622 equal to zero,

C2U(4) + ZU(2) + CU(1) = 0 (1.8)

Equation (1.8) approximates (1.3) whenever the term E2u(4) is large in com-

parison with (01u - 2 zu). In this situation the solutions of (1.3) can be

obtained from the solutions of (1.8) by adding corrections proportional to

81 and $22. In the WKB sense the thermal class solutions are short wavelength

because the term e2u(4) in (1.3) can be large in comparison with ju and

o2
2zu. As shown in Sec. 3, the solutions of (1.8) are related to Airy functions

since they are proportional to the (a - 2) derivative of Airy functions of

negative argument when a is an integer.

The second class of solutions associated with (1.3) is comprised of cold

plasma modes in the sense that these solutions exist even when c2 (and hence

kD-) is equal to zero. The prototype equation for the cold mode class is

obtained from (1.3) by setting c2 0,

zu(2) + aU (I) + 81U - 2
2 ZU = 0 . (1.9)

The solutions of (1.9) are related to confluent hypergeometric functions. When

* the term C2u(4) is small, solutions of (1.3) can be obtained from solutions of

(1.9) by adding small corrections proportional to c2. In the WKB sense the

0 -. .. - " " . .d " " :I" " ' | " | i I I
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solutions in the cold mode class are long wavelength in that c'u( 4) is small

in comparison with the other terms in (1.3)

Solutions in the two classes are generally distinguished by the disparity

in their wavelengths. However, near plasma resonance (z 0), the WKB wave-

lengths of the two modes become comparable and mode conversion occurs. That is,

solutions of one class generate solutions of the other class. This mode con-

version process is clearly exhibited by solutions obtained in this study.

The second order equation (1.9) obtained from (1.3) by setting c2 = 0

exhibits both a singularity at z = 0 and a turning point at z = 31/622. The

existence of the turning point distinguishes (1.3) from an equation previously

2 3
studied by Wasow and by Rabenstein. The results obtained by these authors can

be recovered in the limit 02 0. In the plasma application the singularity

corresponds to plasma resonance and the turning point to upper hybrid resonance.

As shown in Sec. 5 the existence of the turning point profoundly affects the

structure of the cold plasma modes and allows for the existence of solutions

which exhibit no mode conversion for certain restricted parameter values.

The paper is organized as follows. In Sec. 2 we introduce integral repre-

sentations for the solutions of (1.3) and describe the contours associated with

the solution set. In Sec. 3 the solutions corresponding to the thermal modes

are obtained. In Sec. 4 expressions for the solutions corresponding to the

cold plasma modes are derived. In Sec. 5, the mode conversion process and the

linear independence of the solutions is discussed. Finally, in Sec. 6 the

principal findings are summarized.

.II
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2. General Properties of Solutions

Since all of the coefficients of u, and its derivatives in (1.3) are

linear in the independent variable z, general solutions may be found in the

4form of Laplace integrals. Following Coddington and Levinson, but using the

kernel exp(-sz) in the Laplace integral instead of exp(sz), we obtain solutions

of (1.3) in the form

s
U(a,BIa2,C2, z) =f {e-SZ/P(s)1exp[-f {Q(t)/P(t)}dt]ds , (2.1)

C
where

P(t) = t 2 
- (2.2)

Q(t) = t 2 t 4 - at + 1 (2.3)

The contours C in (2.1) are chosen such that, at the endpoints of the contours,

the following condition is satisfied

s

e-sz exp[-! {Q(t)/P(t)}dt] = 0 (2.4)

Using (2.2) and (2.3) we obtain

s s E 2 t4 - at +

f (Q/P)dt = f [- -2 ] dt
- 2

" .2(S3/3 + 2
2 S) - (a/2)kn(s2 - S 2

2 )

+ k n[rs - 02)/(S + 62)] , (2.5)

!-do
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where

$2 $ O~ 1/a2)/2 .(2.6)

Inserting (2.5) into (2.1) the solutions can be written as

U= f(S + 82)0' (S -8) exp[-62s3/3 -Sz] ds (2.7)
C

where

Z = Z + (2.2 8)

a+ = a/2 - 1 + 5,(2.9)

a a c/2 -1 -(2.10)

The endpoints of the contours C are chosen to satisfy the condition

(S 82)" +(S - 2)' -exp[-62S3/3 -sz] =0 (2.11)

It is worth noting that the basic equation (1.3) is invariant under the

transformation

(a, 61, 82, E 2, Z) +(al, -8I, 82, -e 2, _.Z). (2.12)

Thus another family of solutions of (1.3) is given by

P(a, 61, 62 2 , Z) =u(a, -8i, 2, -6
2  Z)

= ,(S + )( 2)a+ exp[E
2s3/3 + sz] ds ,(213

where the endpoints of the contours C' satisfy the condition

(S + 62)a /2 - (S B2)' 12 + a exp[£2s3/3 + sz-] =0 .(2.14)
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In the following we investigate the functions u as defined by (2.7) in detail

* and use the transformation (2.12) to obtain the functions .

The condition (2.11) that must be met at the endpoints of the contours

can be satisfied at large s by choosing the real part of c2s3/3 to be positive.

Since we have chosen e2 real, this requirement becomes, with j 1,2,3,

2Tr(2-j)/3 - f/6 < arg s < ff/6 + 2r(2-j)/3 . (2.15)

Thus as shown in Figure 1, there are three open sectors j s-plane of

angular width 7/3 centered about 2r/3, 0, and -27/3 in which the contour may

go to infinity and satisfy the condition (2.11). Since we have stipulated that

, 1, 2 and E2 are real and positive, the quantity a/2 + S is real and positive.

Thus the condition (2.11) can also be satisfied at the point s = -B2 because

the quantity (s + S2) a / 2+ 6 is then always zero. Since the quantities a + and a_,

while real, are not necessarily integers, the points s = ±82 are, in general,

branch points. If the s-plane is cut from 2 to positive infinity and from

- 2 to negative infinity along the real axis as shown in Figure 1, the multi-

valued function (s - 12)a-(s + a2) a + in the integrand of (2.7) can be written as

(s - 3)C'(s + 62)'+ : (r, eiOl)a-(r2  ei 2) 
+

= exp[a_£nrl + ia_(0 1 + 2frn) + a+knr 2 + ia+(0 2 + 2Trm)] , (2.16)

with -7 < 02 < n and 0 < 01 < 2n. In (2.16) the various branches of the Zn

functions are represented by the integers m and n which denote various sheets

of the Riemann surface. Each sheet of the Riemann surface can thus be labeled by

the pair of integers (m,n). The s-plane represented in Figure 1 corresponds to

the principal branches of the £n functions m=n=O and is labeled by (0,0).
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The endpoints for contours corresponding to solutions of (1.3) must be

chosen to satisfy the relation given in (2.11). This condition can be met by

choosing the contours that begin and end at infinity in any of the sectors

j = 1,2,3 or contours that begin at the branch point s = -i2 and end at

s = -g2 or, alternatively, proceed to infinity within the numbered sectors.

Contours which correspond to solutions in the thermal mode class are shown in

Figure 2. These contours begin at infinity in one sector and end at infinity

in another sector. The solutions obtained from (2.7) by integrating along

these contours are labeled A. where j refers to the sector opposite the contour.J

For example, the contour beginning in sector 2 and ending in sector 1 corres-

ponds to the solution labeled A 3. The contour for the solution A2 begins in

sector 1 and crosses the branch cut along the negative real axis before pro-

ceeding to infinity in sector 3. Th-s part of the contour for the solution A9

lies in the (1,0) Riemann sheet (i.e., the sheet with m = 1, n = 0) and is thus

shown as a broken line in Fig. 2.

Contours corresponding to solutions in the cold plasma mode class have at

least one end point at s = -62 and are shown in Figs. 3(a) and 3(b). The contour

corresponding to the solution labeled Bo starts at the point s = -62, encircles

the point s = 62 in the counter-clockwise direction and ends again at s =

The contour for Bo crosses the branch line along the positive real axis and

thus crosses onto the (0,1) Riemann sheet (i.e., m = 0, n= 1). The portion of

the contour lying in the (0,1) sheet is shown as a dashed line. Contours

corresponding to solutions labeled B. where j corresponds to the sector in

which they proceed to infinity are illustrated in Figure 3(a). These contours

start at the point s = - 2 and proceed to infinity in sector j in such a fashion

that the radius vector from s = ,2 to a point on the contour moves in the
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clockwise direction as the point proceeds to infinity. Thus the contour for the

solution B-, passes above the point s = i2. Contours for solutions labeled B.

are shown in Figure 3(b). These contours also start at s = -v:, but the radius

vector from s = -B2 to a point on the contour moves in the counter-clockwise

direction as the point proceeds to infinity in sector j. Thus the contour for

*B 2 passes below the point s = 02. Note that the contour for B1 shown in

Figure 3(b) crosses the branch cut along the positive real axis and thus passes

onto the (0,1) Riemann sheet. The portion of the contour on the (0,1) sheet

is again shown as a dashed line. While not illustrated in Figure 3(a), the

contour for the solution B3 would similarly cross the branch cut along the

positive real axis but in a clockwise direction and thus would pass onto the

(0,-l) Riemann sheet. The contours for the solutions B. and B. (j = 1,2,3)J J

proceed to infinity along the same asymptotic direction in sector j.

Although illustrated only for the principal sheet, the contours corresponding

to solutions B., B, Bo and A. may begin on any sheet of the Riemann surface.

In order to distinguish among functions corresponding to contours on different

sheets of the Riemann surface we introduce the notation X(m,n;p), where X is

any of the solutions A Bo, B., B m and n are integers specifying the sheet,

and p denotes dependence on the parameters a, B1, 2, E2, z. In this notation

the values m and n indicate the sheet on which the contour begins. As described

above some contours begin on one sheet and end on an adjacent sheet. Thus

A2 (0,0;p) indicates the contour beginning in the sheet with m=O, n=O but, as

shown in Fig. 2, it ends in the sheet with m=l, n=O. For brevity of notation we

omit the dependence on m and n or other parameters unless they are needed to

clarify the discussion. Furthermore, if the values of m and 1 are not explicitly

indicated the principal values m=O, n=O are to be assumed. As an illustration
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we have drawn in Figure 3(a) the contour corresponding to the function B3(0,1).

The contour begins on the sheet (0,1) (and is thus shown dashed) and passes

onto the principal sheet when it crosses the branch cut extending from f2 to

positive infinity. Finally, functions corresponding to contours on different

sheets are simply related. Employing the notation described above and using

(2.16) one can write

X(m,n) = ei fM a + ei2 nn a - X(0,0) (2.17)

Since the integrand in (2.7) is analytic throughout the entire s-plane

except at the points s =± , Cauchy's theorem can be used to establish relation-

ships among the various solutions Aj, Bo, Bj, and B. by using combinations of

the appropriate contours. In order to facilitate the derivation of relations

among the solutions all of the contours in Figs. 2 and 3 have been combined into

Fig. 4. Refering to Fig. 4 and using Cauchy's theorem the following relationships

can be established

B2 = B1 - A 3  (2.18)

B1 = B2 + A 3(0,1) (2.19)

Bj = B3 (1,0) - A2  (2.20)

B3 (0,1) = B2 (0,1) - A1  (2.21)

B3 = B2 - A1  (2.22)

B. - B. (0,1) = B 0 (j = 1,2,3) (2.23)J J 0 "
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The relations (2.18), (2.20) and (2.22) can be readily verified by referring

to Fig. 4. To verify the remaining relations it is helpful to picture the

contours for B2 or B2 (0,1) as crossing the branch cut which extends from a2

to infinity. The relations (2.18)-(2.23) prove useful in obtaining, among

other things, analytic continuations of the functions B. and B.. Having
J J

determined the set of contours which yield solutions of (1.3) in the integral

representation (2.7) we next proceed to evaluate these solutions in detail.

We first examine the solutions A. before proceeding to investigate the solutions
J

Bo, B. and B..

J J
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3. The Solutions A.

The functionsA.(z) are defined by the integral representation (2.7) in

which the paths of integration are given by the contours C(A.) as illustrated

in Pig. 2. In this section we first discuss the asymptotic behavior S

2/3of the functions A.(z) for IzI >> E2 and then derive a power series expansion which

is particularly useful for small argument, z 0. In both cases it is

convenient to introduce the transformation

C = a2/3S; q = C-2/3j. Go = C(12) (23231)

where z = z + C2 22 
- z when E2 << 1. Making use of (3.1) in (2.7) we obtain

the integral representation

A. 0) = C-2(-1)/3 f (o - aF)c - (a + a )Q+ exp[-(a 3 /3 + an)] do , (3.2)
C'(A.) 0

where C'(A.) is the image of the contour C(A.) under the transformation (3.1)

To evaluate (3.2) asymptotically we employ the saddle point method of

integration. 5 We note that the derivative of the exponent f(c) = -(oa/3 + (Irl)

namely f'(a) -(a2 + n), when equated to zero yields two roots, or saddle points,

at 0 = +in For our purpose we discard the minus sign and choose the saddle

point

a, in 2; n = nie I nn >> 5 ().3

eiU

sI
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from which we deduce that, when 0 = 0, a = in with n real and positive; whens

o = n, as =eiT ji = -(-n) with n real and negative, and finally, when

2n, as e3 i/2 -in , with n again real and positive. These values

of a represent the principal saddle points and their location in the a-plane

is illustrated in Fig. S. The principal saddle points at 6 = 0, it and 27r

correspond respectively to the contours for A3, A2 , and A,. The other choice

'-of sign, a = -in , yields nothing new.5

The contours C'(A.) in (3.2), as shown in Fig. 5, are asymptotic to the rays

with phase 0, 2ff/3, and 47/3. Accordingly, making use of (3.3) one has the

following argument ranges

21r(2-j)/3 + 27/3 < arg a < 47T/3 + 2n(2-j)/3;
5

47r(2-j)/3 + Tr/3 < 8 < 5/3 + 47T(2-j)/3 . (3.4)

As shown in Fig. 5, we can use (3.4) to trace the path of the saddle point with

InI fixed as O varies from -7 to 37, or arg a varies from 0 to 2n. It is seens

from Fig. 5 that the chosen saddle point a in (3.3) corresponds to the func-
5

tions A3, A2 , and A1 and traces a circle of radius a = 1nl . However,

we note that a starts just above the right hand branch cut of Fig. 1 and traces
s

a semi-circle in the upper half of the a-plane, at which point a crosses the
s

left-hand branch cut from the principal sheet onto the adjacent sheet of the

Riemann surface, m = 1, n = 0 in accordance with (2.16), and traces a semi-circle

on the lower half of the (l,0)sheet.

We observe from (3.4) that the path of steepest descents for A3 lies entirely

on the principal sheet of the Riemann surface and therefore the saddle point

integration of (3.2) is independent of the branch cuts, which is to say

that the multivalued factors (a - a 0) and (a + a ) + in the integrand of (3.2)0 o
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are assigned their principal values. For A2 the path of steepest descents

n starts at infinity on the principal sheet and terminates at infinity on the

adjacent m = 1, n = 0 sheet thus crossing the left-hand branch cut. However,

since the saddle point also crosses onto, the (1,0) sheet, the saddle point

integration is carried out assuming that the multivalued factors in (3.2)

vary continuously as the saddle point crosses the branch cut. Finally,

as regards the path of steepest descents for A,, we note that it is also

independent of the branch cuts but now lies entirely on the m = 1, n = 0

sheet and, therefore, the saddle point integration of (3.2) evaluates Al(l,0).

The multivalued factor is evaluated according to (2.16) with m = 1, n = 0.

Next, we wish to determine the direction of traversal through the chosen

saddle point as. In the vicinity of a we can write -x2 = f"(cs)(o - as)2 +

where x is real and positive (x > 0) after passing through the saddle point.

In the present instance - f"(a s) = = in . Hence, extracting the square

root and putting w = a - a , we have x= +[ s '(A)]2 w = + W. Ignoring

the plus sign, writing -1 = e and putting arg x = 0 yields

arg w = -arg (a)= 37/4- 0/4 (3.5)

which says that, for A3 and 0 = 0, arg w 3v/4; for A2 and 0 = n, arg w = 7/2,

and for A1 and 0 = 2n, arg w = 7/4. We note that (3.5) gives, for A3 and A1,

the correct direction of traversal through the saddle point in accordance with

the arrows drawn in Figs. 2 and S. However, for A2 the direction of traversal is

opposite to the direction of the arrow, which gives a minus sign to be attached

to the final result for A2.
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Asymptotically, IZI >> E / and with e2 << 1 yields z =z + c2 32 Z

and i = -2 3z. Furthermore, from (2.6) a = 
2

2 / 22 a1/2a2 0

from which instead of the exponents a+ and a_ defined by (2.9) and (2.10)

* we introduce

a+ a/2 I 1 a8o a_ a /2 -1 00.. (3.6)

After this preamble, we can now apply the familiar leading term formula of the

* method of steepest descents to compute an asymptotic representation for the

functions A.i(ni) given by the integral representations (3.2). Thus we obtain,

for the saddle point a~ s n and j =1,2,3, the leading terms:

A.j(y,0;nl) /Tr H je 2(U-1)/3 ( G0)a-( + a 0)a+ e x[f (a,)]{l+0(a 3

[-f"l(a )2)

=(-l/ /~() i a_ (inl+a a+ e.c {l+0(1/ )1 (3.7)
0 0 ~[in -]'1

* where

(2/3)n 1  
= (2/3)e 1 32 y -fi-()] (3.8)

* and

m Ia ) > 0Is (i.9)
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We have introduced the factor y to insure the continuity of the function A2 as

the saddle point crosses the branch cut along the negative real axis. The general

solution A (m,n;n) can be found from (3.7) by using (2.17).

From (3.8) we deduce that for j = 3 and 8 = 0, -i = -(2/3)in 3/2 with ri

=2 an 0= i~ =3/2
real and positive; for j = 2 and 0 = , -i = -(2/3)(-n) with n real and

negative, and finally, for j = 1 and 0 = 2f, -ii = (2/3) with n again real

and positive. Finally, to conclude our asymptotic leading term presentation we

2/3translate (3.7) into a function of z. Recalling that a = C a2, we obtain,

after some algebraic manipulations,

A. (y,O;z) =(-)J(iz /F-862)a-(iZ /f+"2)a+ VT e -  (310A.(y,0;e {1+0(1/r)} , (3.10)

where the multivalued factor is evaluated as discussed above.

In (3.7) we have retained the term a even though we have assumed lasI >>
0 0

(i.e., IZI >> C
2$2

2) in order to preserve the topological structure of the cut

a a-plane. It is useful to obtain a form for A. in which a is ignored in comparisonJ 0

with a but this procedure will alter the topology of the cut a-plane. Ignoring
s

the a term in (3.7) is formally equivalent to setting o = 0 so that there is a0 0

single branch point at the origin rather than two branch points. The multi-

a a+ o-2valued factor in (3.7) becomes a a - a Taking the branch cut to lie5 S 5

along the positive real axis and the principal sheet to have argument range

0 < arg a < 2n, we see that the argument range for the multivalued factor
S
a_ a a+

(a - a0 ) (os + a )a+ in (3.7) exactly coincides with that of i a+ when o =0.
0 s s

Noting from (2.17) that A1 (1,0;i n ) =e" 2  A ) we can then write

• , ln) w canthenwrit
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2(a-1 )/3 5/ s2 -ir

A.(r0) % (- Pj (in 2 ) e , (3.11)

where the phase factors pj are:

P3 =P2 1 Pl =e2+ (3.12)

In (3.11) the argument range of (in2) is from 0 to 2R.

As mentioned previously the functions A. (n) are closely related to AiryJ

functions. This relationship is best elucidated if we consider the case o = 0,

which is equivalent to setting a2 = 1 = 0, with the result that (1.3) reduces
2/3z

to (1.8). Putting n = / z in accordance with (3.1) and writing X(n) instead

of u(z), we obtain from (1.8) the equation X (3)+ nx + (a - 0)X 0. When a

is an integer, it can be shown that x(n) is proportional to the (a - 2) derivative

of any Airy function of negative argument, i.e., any solution of v(2)+ nv = 0.

When (a - 2) is a negative integer the above statement must be interpreted as

the la - 21 integral of v(n). The same conclusions follow from the integral

representation (3.2) upon setting ao = 0; that is, A.(n) in (3.11), when a is

an integer, is proportional to the (a - 2) derivative of the asymptotic leading

term of an Airy function of negative argument, and hence is a solution of our

basic equation (1.3).

We now proceed to discuss the small argument behavior of the function A.(n).

For this purpose we make use again of the scale transformation (3.1) and the

integral representation (3.2) wherein a+ and a- have their original definitions

(2.9) and (2.10). To evaluate (3.2) we first construct the power series expansion

- 0 - t = + T2 Cm w! < I 3.13)
0 m=O
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where w = a/a and the expansion coefficients

Cm n m-n
n=O l t

are given in terms of the familiar binomial coefficients. The expansion on the

right of (3.13) is absolutely convergent for jwj<l because it arises from the multi-

plication of the two absolutely convergent binomial expansions corresponding to the

factors (a-) and (a+ao)a. This result follows from Cauchy's Theorem on the
0 0

6
multiplication of absolutely convergent series. Since the power series (3.13)

is absolutely convergent for w1=l--6, where 6 is an arbitrarily small number, it

also follows that the series in question is uniformly convergent 7 for Iwi < 1 - 6.

a_
Hence, we can replace the product (a - (a + a )+ in the integrand of (3.2)

0 0

with the uniformly convergent series (3.13) and integrate term by term to obtain,

for j = 1,2,3,

Ap i E - (c-1)/3 cm a (3.15)
m=O

where the phase factors pj are given by (3.12), and where

( a-2 -'3/3-on (3.16)gi (0,00 da a e
C' (A)C(Aj

8
are the same functions introduced by Rabenstein. In (3.16) the contour C'(A.)

is chosen such that Jul > a everywhere along the contour, which is the condition

for the convergence of the series (3.13).

II . .. .... .. ..
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A convenient expression for the functions gj(n,a), j = 1,2,3, is obtained

by expanding the factor exp[-an] into a power series

-OO

e = [(k/k!]kk , (3.17)
k=O

which is uniformly convergent in the finite a plane, Jul < . Introducing

(3.17) into (3.16) and integrating term by term we obtain

S k  d a -2+k -a3/3
g.(nc) /k!]kJ da a e (3.18)

k=0 f C(Aj

Putting y = a3/3, the integrals in (3.18) become

I (a,k) = do aco-2+k e 3/3= 3(c+k-4)/3 J dy e y(a+k-4)/3 (3.19)

C' (A) H.

where the contour H. is the image of C'(A) under the transformation.

To ascertain the shape of H. consider, for example, C'(A 3) which begins at

,. infinity with arg a = 0 and proceeds to infinity with arg a = 27/3. Under the

* transformation, y = a3/3, the contour H3 begins at infinity with arg y = 0,

encircles the origin in the counter-clockwise direction, and proceeds to infinity

with arg y = 27. Therefore, H3 is simply Hankel's contour and we can write

-(+k4)/3 -y (a+k-4)/3 (3.20)

13(mk) 3dy e y

which can be evaluated in terms of gamma functions.

.o
6-



-21-

Proceeding in an entirely analogous fashion, we ascertain that the contour

H2 starts at infinity with arg y = 27r, encircles the origin, and terminates at

infinity with arg y = 47, whereas the contour Ii, begins with arg y = 4- and ends

with arg y = 67. Thus, introducing the abbreviation

p= p(a,k) = (4-a-k)/3 , (3.21)

and making use of a generalization of Hankel's integral representation,
9

I.(c,k) = 2fi exp[ri(l - p)(7 - 2j)]/{3Pr(p)} (3.22)

Making use of (3.18) and (3.19) we obtain the expansion

g.(n,a) =1 [(_)k/k!]I (ak)nk , (3.23)
k=O

where the functions I.(a,k) are given by (3.22). Finally, using (3.15) we
J1

obtain the power series expansions

A-(2,) =pj E cm U° [(/)k/k!]h (c - m,k) k  (3.24)
m=O k=O

where the pj are the phase factors given in (3.12) These functions, for j = 1,2,3,

4 correspond to their asymptotic counterparts A.(9) given by (3.7) and are subject

to the same argument ranges for n as given by (3.4).
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4. The Solutions B., B., and Bo

The functions Bj, Bj, and Bo are solutions of (1.3) and are given by the

integral representation (2.7), where the corresponding paths of integration are

shown in Figs. 3(a) or 3(b). Since we are unable to directly evaluate these

integrals, we resort to a perturbation expansion based on the fact that 2 << I.

Thus expanding (2.7) in a power series in £2 we show in the Appendix that, to

first order in c2

. I
U({,31 2 E ;Z) = U(0.,S 1 PB2,0;Z )  + C2a 2U) 1 2=

u° - 62[h(uo)/432] , (4.1)

where u(a,61, 2 ,c
2 ;z) is any of the solutions BO  . or B and uo is theJ j

corresponding solution evaluated at £2 = 0. The expression for h(uo) is given

in (A.2.6) in terms of u0 evaluated at shifted values of the parameters a and 1.

We observe that the functions uo (z) are solutions of the reduced (£2 = 0)

second order differential equation (1.9) and are given by the integral represen-

tation

Uo (Z) = f (s 62 )a-(s + 82) a + e - s z ds , (4.2)
C

where a+ and a_ are given by (3.6) in terms of a and 6o = a1/2 2. The contours

of integration in (4.2) are those associated with B., B., and Bo and respectively
3, 3

yield functions denoted by b., b. and bo . Finally, if we introduce the trans-

formation u(x) = g(x)exp(-x/2) with x = 2a2z into (1.9), we obtain Kummer's differ-

10ential equation
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(2)()
xg + (a - x)g ( /2 - 0o)g(x) = 0 , (4.3)

which has two independent solutions that, for our purpose, we write as

g (x) M(a/2 - 6 a;x) (4.4)

g2 (x) = U(a/2 -o ,a;x) , (4.5)

where M and U are Kummer functions. Since the properties of these functions

are well-known, we proceed to obtain expressions for bj, bj, and bo in terms

*. of Kummer functions.

The function b. obtained from (4.2) by integrating along the contour

associated with Bo is related to the Kummer function M(b,c;z). This can be

demonstrated by using the transformation

s = 26 2 (t - ) (4.6)

in (4.2) to obtain

=(t)' 2 (1+) aa B -2

bo  (2 2)X - I e 2 z f (t - )- t a  e - 2 Zt dt . (4.7)
0

The contour in (4,7) is the image of C(B ) under the transformation (4.6). It4 0

starts at the origin, circles the point t = 1 in the positive direction and

returns to the origin. The integrand in (4.7) is bounded everywhere along the

contour for Izi < - so that an expression can be obtained for bo that is valid

for the entire z-plane, as is shown in the following.
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The integral representation for the Kummer function M(b,c;z) for

Re(b) > 0 is

P .; (1+)

-(c) F(b-c+l) zt b-i c-b-1M(b,c,z) = 2i (b) (t 1) dt (4.8)

0

From (3.6) one has a = a/2 + -o 1, where o = 1/2 2 is 8 evaluated at C2 = 0,

and since a, 1, 2 are taken as real and positive, Re(a/2 + o) > 0 so that

(4.8) can be used in (4.7) to obtain

bo= (2U2) e /2 M(a-a,a;-(

r(a) r(1 - a)

where a = a/2 -o and = 202z. Finally using the Kummer transformation

M(b,c;z) = eZM(c-b,c;-z) (4.10)

yields

b (2 1 2 )"-1 e-/ 2 ri r(t - a)(4.11)o r() P(l - a)

An expression for Bo, accurate to order 62, can thus be obtained by combining

(4.1), (4.11) and (A.2.6):

)o-I 2Tri F(a - a) e-C/2 (C2F24) M(1Bgo= (2132) P(a) r e a [1 -a)]M(a,;)

- (E 2 /126 2 )[M(a + 1,' + 4;F.) M(a + 3,u + 4;F)]

- (C2/12B2 + E2 2/4)[M(a + 2,t + 2;C) - M(a,L + 2;F)] . (4.12)

From (4.12), the value of Bo can be found to order c2 for any z with IzI < .
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The solutions B. and B. are related to a linear combination of the Kummer
1 3

functions M(b,c;z) and U(b,c;z). The contours associated with the solutions

B. and B. go to infinity in the sector j in accordance with (2.15) and the
J 

a-2 ~ZS

integrand of u0 as given in (4.2) has the asymptotic value s e In order

to insure that the integrand remains bounded for all a one must require that

. IzI > 1zol > 0 (for some given zo), and

-Tr/2 < arg(sz) < n/2 . (4.13)

However, the subscript j already implies an argument range for the variable of

integration s along the contours associated with the solutions B. and B.. AsJ 3

given by (2.15) these ranges are, for the solutions B.,
J

27T(2 - j)/3 - 7r/6 < arg s < 7r/6 + 2n(2 - j)/3 . (4.14)

" From (4.13) and (4.14) one finds that the solutions b. are well-defined only
3

over certain regions of the z-plane, namely,

2((j- 2)/3 - 27/3 < arg z < 2Tr/3 + 2rr(j - 2)/3 . (4.15)

Using (4.2) and the transformation

s = 2B2 (t + ) , (4.10)

yields iO

h (2 2) I /2 j (t + 1 )a + e- dt (4.17)
qJ -1
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where the angle 0 lies in the sector j. The paths of integration given in (4.17)

are the image of the contours corresponding to the solutions B. under the trans-
J

formation (4.16). Similarly, from the definition of the B. contours, we have

1 - /2fei (0 + 27r)aa

b. = (2 2) ' - e - 1/  e ta-(t + 1)a
+ e -  dt (4.18)

-12

The integral representation for the Kummer function U is

U(b,c;y) (I/2Tri)r(l - b)e-bi (0+) b-(1 t)c-b-i e-yt dt
feie
coe

In the integral of (4.19) the contour starts at infinity with argument 0, circles

the origin in the positive direction (i.e., cuts the negative t-axis) and returns

to infinity with argument e + 27r. Since the integrand of (4.19) is analytic in

the region between the origin and t = -1 the contour can be extended to include

the point t = -1; hence

(0+) - 1 e (e + 2ir)

= iO + J (4.20)

we we -1

Using (4.20) and (4.17)-(4.19) yields

Bra
a-i 27ie 2

b. - b- (2 2 ) a) e U(a,a;,) (4.21)

Using (2.23) together with (2.17) one finds that

i2Tra -
B= [ei a  1]1 {[B B') Bo-

B i- - - (4.22)

J
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which, for F2 = 0, becomes

b. [e1a b b 0
b=[e z a  

-
1  L - b.)} b0 , . (4.23)

J

Using (4.21) to replace the combination b. b. in (4.23) and employing theJ J

identity P(a)r(1-a) = T/sin (a7T) gives

Ct-/2 i b
b. = (2 2) F(a)e U(a,ct;C) (4.21)

2i sin(ria)

The relation (2.23) for e2 = 0 gives

i2-na
b= b.(0,1) + bo = e b. + bo  (4.25)

Using (4.25) to replace b. by b. in (4.24) givesJ J

ia

ba 2 2)ct-1 i2a - /2 e bo=(2) e r(a)e U(a,a; ) 2i sin T ) (4.26)

With (4.11) the relations (4.24) and (4.26) can be used to express b. and b.

entirely in terms of the Kummer functions U and M,

Ct- I -F/2 IT exp(-iITa) T' (at- a)
bj) = (2 2) e (r(a)U(a,a;r) -sin(ira~P(c)P(1-a) M(a, , i41 (4.27)

si (iamlmla

-n d

( ) = ( O2) -1 -F1/2 sinTa_.)F -) e (i~ra) ]'((t-a); ) 4 28
b = (2 2) e { F(a)exp(21Tia)U(a,c;) - L,,v ,4.28,

where again a = x/2 - %n and , = 2K,2z.

L4
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Expressions for B. and B. valid to order c2 can be obtained by using3 3

(4.27) and (4.28) in the expansion (4.1) in the same fashion that the expres-

sion (4.12) for B is obtained from (4.1) using uo = bo . We do not write out

the corresponding expressions for B. and B. here but only note that the functions
j J

b. and b. deduced from (4.2) are obtained under the restriction Izi > Iz I > 03 3o

and within the argument range (4.15). In other words, B. and B. can not be evaluated

at the point z = 0 using the expansion in E2 technique. The problem of applying

(4.1) at the origin for the solutions B. and B. arises because the function3

Li(a,ct;T) in the expressions for b. and b. is singular at the origin (z = 0) for
3

1. However, the behavior of the solutions B. and B. for jzI - 0 for all values
-j 3

of a can be found by employing the relations (2.18)-(2.23). For example, multiplying

(2.22) by e - and using (2.9), (2.10) and (2.17) yields

A 2 (0,1) = -B1 (0,1) + ei2 fa i3 (4.29)

Using (2.23) with j = 1 in (4.29) and (2.19) and (2.22) in the resulting

expression gives

B3 = [ei 2Tra - 1]1 {A2 (0,1) + A1 + A 3 (0,1) - BO }  (4.30)

The expression (4.12) can be used to evaluate Bo, for all IZl < ' , while the power

series expansion (3.24) can be used to evaluate the functions A. for small argu-0 3

ment (IzI << 1). Thus, expressions such as (4.30) are particularly useful in

evaluating B. and B. in the neighborhood of the origin. For large values of Izi,
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on the other hand, B. and B. are more conveniently expressed using the c

expansion of (4.1) in terms of b. and bi., respectively.

Since the solutions related to the Kummer function U(a,ca; ) contain the

combination b. - b.c.f. (4.21)] it is useful to construct the combination

B3 - B3 in a form that can be evaluated as IzI 0. To do this we multiply

(2.23) by e -and use (2.17) to obtain

B3 =B 3 (0,-l) -B 0(0,-l) .(4.31)

-i 2 ra-
Multiplying (4.30) by e and using (4.31) in the resulting relation gives

B3  [ e - 1]- {A2 + A1(0,-l) + A3 -B 0(1,0)} (4.32)

Finally, combining (4.30) and (4.32) yields the desired combination

B3 -B 3 =[ei7 - l]-1 {(e'2 " 1) lA 2 + A, (0,-l1) + A3 ]- (t. e BO I)8

(4.33)

Fxpressions similar to (4.33) involving B2 and B, rather than B3 can he found

by using (2.18)-.(2.22). The expression (4.33) can be evaluated at integer values

of :tby assuming that B3 - B3 is an entire function of a and then using

l'H1ospital's rule to obtain

BI B3 = J[A2(0,1) + A3(0,1) + A, + B0(l,0)]/2

(l/rr)( - l[3A;, + A1 (0,-l) + Al]

+ (l/27Ti) (e -pB, (4.134)

at=n
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where n = 0,±l,-2..... The expressions (4.33) and (4.34) show that the com-

bination B3 - B3 is finite and non-singular at the origin for all values of a.

On the other hand, the expression (4.21) with j = 3 indicates that b3 - b3 is

singular at the origin for a > 1. Thus the exact solutions of (1.3) are

rigorously well behaved at the origin although the restricted expressions obtained

by using an expansion in -2 indicate otherwise, which is a consequence of the

singular perturbation character of this problem. Expressions for B2 - B2 and

B1 - B1 are readily obtained from (4.33) using (2.18)-(2.23).

Finally, it is instructive to consider a special case in which the parameters

a and 6 have the values

a V = v/2+ , (4.35)

where v is a positive integer and p = 0,1,2 ..... In this case

a =V- l +i ; (4.36)

and

a = -02 + 1) (4.37)

In the integral representation (2.7) there is now only an isolated pole of

order P + I at the point s = 32. The points s = +I2 are no longer branch points

and the s-plane is no longer cut by branch lines, so that B.(0,l) = B. and (2.23)

then gives

B. B - BO  (4.38)q J
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The contour Bo now encloses the pole at s = 2 and from Cauchy's Theorem we

immediately have

Bo = 2TriR( 2) (4.39) S

where R(O32) is the residue of the pole at s = a2. Using (4.36) and (4.37) one

obtains from the integrand of (2.7) the expression

I d P-1+W -62S3/3 -$s]

[(s + B2) e- e 1  (4.40)P! ds l s

Making use of Leibniz's Theorem the expression (4.40) can also be written as

R(02) = E [(s + 62) v e-I+P  ] (4.41)
ds=62

where is the usual Binomial coefficient and

E. d) E253/3
E .dsj- (e (4.42)

S=2

By defining the small quantity oo -2/36 2 and letting x : (s + 02)z, (4.41) becomes

)= - /3 e 2 j () [0 o/62 ]J f1-v-j T.

x d - [xV-+J e-X] (4.43)

dx s=23 2 Z
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where the polynomials T are given by

T e e" 0 1/3 d. (e )3/ (4.44)
j dti

P and To = . The expression (4.43) can be further simplified by using Rodrigues'

Formula 13for the Laguerre Polynomials

V- 1+j 1 x l-v+j d" Xv-1+j. -xL. (x) W e1D x (xI- e ).(4.45)

Using (4.45) in (4.43) one obtains from (4.39)

3 O 27ri M22) v-i 2 i e-o

=0~ (2 0) T . L 1-j ( 2 62 z~tl (4.46)

for p 0,1,2,..., and where z =z + cr0a2- Using (4.44) to evaluate terms

in (4.46) results in

B=27ri M22 v-i _ 2 LV1 322 )+O ) .(4.47)

Note that a 3= C023so that the correction terms to B as given by (4.47)
0 0

are of order C2
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5. Application to Physical Problems

In applying the solutions of (1.3) to a physical problem one needs to

evaluate the solutions A. Bo, B and B. in the vicinity of the real axis

(Im z - 0+). However, the expressions given in Secs. 3 and 4 for some of

the solutions are valid only in certain sectors of the complex z-plane. Since

some of these sectors contain only a portion of the real axis, the expressions

given must be extended by means of analytic continuation to include tile entire

regiu- of physical interest. The process of analytic continuation leads to a

mixing of the solutions of the thermal and cold plasma classes. This mixing

embodies the physical phenomenon of mode conversion.

In constructing analytic continuations of solutions we will take the

imaginary part of the independent variable z to be small and positive. This

assumption leads to exponential decay of waves in the direction of propagation

and is justified on physical grounds because it corresponds to adiabatic switch-on

of the exciter at frequency w. The analytic continuation of the solutions of

(1.3) can be accomplished by using the relations (2.18)-(2.23) which are derived

by applying Cauchy's Theorem to the contours defining the various solutions.

The asymptotic expressions for the solutions A. as given by (3.7) are

valid in sectors of aperture 47/3 as given by (3.4). Since :he solution A1 is

defined in the sector 57/3 < 0 < 37 (z = Izle i), which includes the entire region

of physical interest, it needs no analytic continuation. Just above the negative

real axis 0 = 3ir - A, where A is a positive infinitesimal, the term exp(-ir) in

the asymptotic expression (3.7) for A, varies as expirl. Thus A1 is exponentially

growing near the negative real axis. Along the positive real axis where = 211 + ,

the tern. exp(-i) varies as exp iIrl so that A, represents an outward propagating
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wave in the WKB sense. The solution A2 is defined in the region N/3 < 0 < 5n/3

which includes the region of physical interest only near the negative real axis

where 6 = 7 - A. The term exp(-iC) in (3.4) for j=2 then varies as exp(-kI ) so

that A2 is exponentially decaying for Re(z) < 0. To analytically continue A2

we use the relations (2.18), (2.20) and (2.22) to obtain (see Fig. 4)

A 2 = -A3 - B2 + B2 (1,O) - Al(1,0), (5.1)

for Re(z)> 0. All of the functions on the right-hand side of (5.1) are defined

in sectors that include the region just above the positive real axis as can

be verified by (3.4) and (4.15). The relation (5.1) indicates that the solution

- A2 undergoes mode conversion when the Re(z) changes sign. In this paper

we use the term mode conversion to denote a process wherein a solution

of one class produces a solution of the other class. For example, as indicated

by (5.1), a solution of the thermal class, A2 , near the negative real axis,

leads to solutions of the cold mode class as well as thermal mode class

solutions near the positive real axis. Finally, the domain in which

the solution A3 is defined includes the region above the positive real axis but

not the region above the negative real axis. Near the positive real axis 0 = A

for j=3 and A3 varies as e thus representing, in the WKB sense, an inward

propagating wave. Using (2.18), (2.21) and (2.20) to analytically continue A 3

we find that (see Fig. 4)

A 3 = -AI(O,-I) - B3 + B3 (1,0) - A 2 , (5.2)
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where all of the functions on the right-hand side of 5.2) are defined

in the region just above the negative real axis.

The expressions derived for the solutions B. and B. are also valid (,711vJ J

in certain sectors of the z-plane as indicated by (4.1S). The solutions B3 and

B3 are defined for the entire region above the real axis and need no analytic

continuation. The solutions B2 and B2 are defined only in the region above the

positive real axis and must be continued by using (2.21) and (2.22) from which

we obtain

B2 = B3 + At(O,-l) (5.3a)

and

B2 = B3 + A, (S.3b)

Both functions on the right-hand side of (5.3a) and (5.3b) are defined in the

region just above the negative real axis. B2 and B2 both undergo mode conversion

when Re(z) changes sign as indicated by (5.3a) and (5.3b) because

they generate a solution of the thermal mode class in addition to a solution

of the cold mode class. The solutions B1 and A, are defined for the region just

above the negative real axis and can be continued to include the region just

above the positive real axis by using (2.18) and (2.19) to obtain

B, = B2 + A3 , (5.

and

B, = B2 + A 3 (0,1) (5. 4h

qh

6



-36-

Again the solutions B1 and B1 undergo mode conversion when Re(z) changes

sign.

In addition to having expressions for the solutions in the region above

the real axis a useful set of four linearly independent solutions must be

selected from the general set in order to solve a well posed problem of

physical interest. In particular, we have in mind applying the solutions of

(1.3) to the inhomogeneous problem in which a driving source is present in

the plasma. We thus shall discuss four linearly independent solutions that

are convenient in constructing a Green's function for (1.3). The linear

independence of a solution set can be formally established by evaluating the

system Wronskian. Rather than perform this calculation we defer it to a

later paper and only present here a heuristic argument for linear independence.

A Green's function must satisfy certain boundary conditions and we impose

these beforehand in choosing our solution set. The boundary conditions we

impose are: 1) wave-like solutions must correspond to transport of energy away

from the source, and 2) solutions must be bounded as IRe(z)I - . Since the

thermal mode and cold plasma mode classes of solutions have vastly different

scale sizes away from plasma resonance, our strategy for identifying a linearly

independent set is to select one pair of linearly independent solutions from

each class. We are then assured of the linear independence of pairs of solutions

from different classes because of their different scale sizes. From the cold

mode class of solutions we choose the pair B2 , B2 while from the thermal class

of solutions we choose the pair A1 , A2.

6.

6!
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From the solution pair Bq, B? we next construct a pair of linearly inde-

pendent solutions, one of which is bounded as z , while the other is hounded

for z -c. This solution pair is

BR [(212) /2 r] 1(-) e -{B 2 (, 1 , 2 ,2,C) - B2 (0,@,1 2 ,c',<} , (5.5)

BE = [(2U2) /27i]F(-o+) e-i . +{B 2(0,-$i 1 ,K, -2,- ) - ,,- , .
(5.,)

S
Note that in (5.6) we have used the transformation (2.12) so that we are assiireJ

B is a solution to (1.3). The normalization coefficients in (5.5) and
L

(5.6) have been determined using (4.27) and (4.28) and are chosen so that

the expressions reduce, when E2 = 0, to the simple forms given below,

BR = e U(a,a;), (5.7)

B = e + / 2 U(O - a,ca;-E) ,

14
whire a /2 - 1 . In the notation of Slater these two soliutions are0

BR  e Y!) (5.9)

L Y7



-38-

so that using (5.9) and (5.10) together with (4.1) we find that the Wronskian

of B and B is
R L

W(BR B) eli7 (L/ 2 +So) 2))-11

R = e + 0(e 2 ) , (5.11)

where = 2a2z. In (5.11) we have again assumed that Im(z) is positive and have

ignored contributions to the Wronskian arising from mode conversion. Mode conver-

sion contributes terms to the Wronskian that are a product of cold and thermal terms

and thus are rapidly oscillating. The function BR is bounded as z approaches

positive real infinity while B is bounded as z approaches negative real infinity.
L

*The asymptotic form of the two thermal modes A1 and A2 has been discussed

before. The function A 2 is exponentially decaying along the negative real axis

while A, is exponentially growing. Thus A2 and A1 are clearly linearly independent.

Near the positive real axis A1 represents an outward propagating wave while

from (5.1) we see that A2 , while undergoing mode conversion, contains an A 3 term

which represents an inward propagating wave so that A1 and A 2 are again linearly

independent.

The solution set BR, BL, A2 , A1 is convenient for constructing a Green's

function. If we denote the source location by z' then the solution pair BL, A 2

can be used exclusively for Re(z-z') < 0 because they are the only pair bounded

at negative real infinity, while the remaining pair BR, A1 can be used exclusively

for Re(z-z') > 0 because they are the only pair bounded at positive real infinity.

While we do not construct a Green's function here we can use the solution set

BR, A1 , BLO A2 to illustrate the type of mode conversion that may occur in a

plasma witLi a driving source.
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- As an illustration of mode conversion in a physical problem, -onsider the

solution BR for Re(z) > 0. This cold mode solution as given by (5.5) depends

upon B2 and B2 which can be analytically continued 
to the region just above the

negative real axis by using (5.3a) and (5.3b) from which we obtain, for .,e(z) < 0,

BR [(22) -/ 2 i]r(-a_)e-  {B3(0,B1.I2 2C.) -B

_ [(2k) 1 -alr(l + t_)]e - i2Fa AI(I,$ 2 ,c 2 , ) . (5.12)

We have already indicated that A, is exponentially decaying near the negative

real axis while the combination, B3 - B3, is defined in the region above the

negative real axis and according to (4.21) is proportional to the hypergeometric

function U(a,n; ) for E2 = 0. The expression (5.12) illustrates mode

conversion in that a solution of the cold class on one side of plasma resonance

consists of a combination of cold and thermal modes on the other side of resonance.

We note that in this particular example the amount of mode converted thermal

mode is proportional to I/F(I + u_) , and thus can be zero when

I + _ = /2- = -. (5.13)

where = 0,1,2,.... hen .x is an integer, as is the case for a plasma,

6I the condition (5.13) is identical to (4.35). In Section 4 we found that under

these conditions the cold mode solutions were everywhere proportional to B,

which in turn could be expressed as a sum involving Laguerre Polynomials [see

* (3.46)]. Thus at certain special values of the parameter r the phenomenon of mode

conversion does not occur in the sense that the amplitude of the thermal mode is

zero and furthermore, at these values of ( the cold solutions are proportional to

I Laguerre Polynomials for c' = 0.
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The quenching of the mode conversion process does not occur for all

possible solutions, e.g., the solutions B for Re(z) < 0, corresponding to aL

source located in the region z > 0. Using (5.6) and the relations (5.3a) and

(5.3b) with the proper parameter values, we obtain the analytic continuation,

for Re(z) > 0,

=0' eT 2u)-ic+ '_E2_ 3,PI2 62_}
BL =[(2 2)1 -t/27i]r(2+a+) e +{B 3 (ct,-S 1 ,B2,-E,- ) - B(,S,2-2-)

-a -i2Trc+2

[(2 ?)I (I)] e A,(c0,-S 1 , 2 ,-s 2 ,- ) . (5.14)

Since a and 8 are positive, 1/r(I+c+) = I/F(a/2+B) is never zero and mode conver-

sion always occurs in this case. Furthermore, the mode conversion process is not

restricted to the generation of thermal modes by cold modes. The thermal modes

also undergo the mode conversion process and generate cold modes. Although the

solution A1 does not undergo mode conversion when Re(z) changes sign, the

solution A2 does as is illustrated by the analytic continuation of A2 given in

S (5.1 ).
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6. Conclusions:

-By applying the Laplace integral technique we have obtained integral

representations of the solutions of the fourth order differential equation (1.3).

The solutions are distinguished by the contours along which the integral is

evaluated. The solutions A. are obtained by integrating along contours having
3

both end-points at infinity and have been identified as belonging to a class

of solutions characterized by short scale lengths and thus are referred to as

thermal modes. The solutions B , B. and B. are obtained bv integratingo .1 j

along contours with at least one end-point at the branch point s = -V. and

belong to a class of solutions characterized by long scale lengths and are

referred to as cold modes. The properties of the exact solutions Aj, BO , B.

and B. have been elucidated by expressing them in terms of more familiar
J

functions using power series and asymptotic expansions.

The solutions A have been evaluated for large and small values of the inde-

pendent variable z by using different techniques. A power series expansion in

z has been derived in (3.24) in order to determine the solutions A. in the neighbor-
3

hood of the origin. The solutions A. are clearly finiteandwell behaved in the
J

vicinity of the origin. For large values of z the functional form of the solu-

tions A. has been determined in (3.11) using the saddle point method of integrationj

to obtain the leading term in an asymptotic expansion. For real values of the

independent variable these asymptotic expressions represent either exponentially

decaying or growing solutions or propagating wave-like solutions.

Expressions for the solutions B., Bj and B. have been obtained by expanding

the integral representation in powers of c2. This technique allows an expression

to be obtained for the exact solutions Bo, Bj B. in terms of the corresponding' J

solutions b,, b. b. of the second order differential equation obtained from
1 3

(1.3) by setting L2 - 0. The expansion (4.12) obtained in this manner for the
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solution Bo involves the Kummer function M(b,c;z) and is valid in the entire

z-plane (Izi < ). In particular the solution B can be evaluated in the

neighborhood of the origin using (4.12) and thus is useful in evaluating

other members of the cold mode solution class near the origin.

An expansion in powers of e 2 can be obtained for the solutions B. and B.J J

but involves the restriction IzI > Izol > 0. The expansion involves the

corresponding solutions b. and b. which contain the Kummer functionJ J

U(b,c;z) which is not bounded at the origin for Re(c) 1. The c2

expansion is helpful in evaluating the solutions B. and B. for largeJ J
values of z. The solutions B. and B. can be evaluated in the neighborhood of the

JJ

origin by using Cauchy's theorem to establish relationships among the various

solutions as given in (2.18)-(2.23). Thus the solutions B. and B. can be

expressed entirely in terms of various combinations of the solutions Aj and Bo

as shown for B3 in (4.30). Since expressions for the solutions Aj and Bo

valid in the neighborhood of the origin have been obtained the solutions B. and

B can also be, in principle, evaluated there. Unlike the associated solutions to

the second order differential equation, b. and bi, which can have divergent be-

havior at the origin for a a 1, the solutions B and B are always finite at

the origin. The physical interpretation of this result is that the inclusion of

thermal effects keeps the amplitude of the electric field finite at plasma reso-

nance through the production of short scale thermal modes. The production of short

scale waves near plasma resonance involves the process of mode conversion.

For certain values of the parameters, a and 6, namely a a positive integer

and 6 = E262312 + 61/262 a positive half-integer, the topology of the inte-

gration plane is greatly simplified. While the sector structure in the integration
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plane remains, thereare rio branch points but only an isolated pole. The

quantities a+ and a- have integer values under these conditions so that the

phase factors exp(i2rma+) and exp(i2 na_) are unity and as indicated by (2.17)

all solutions X(m,n) are equivalent to the solution X evaluated on the principal

sheet. The combination of solutions B. - B. is equivalent to the solution
J J

B as indicated in (4.38). Furthermore, the solution B can be expressed as

a series of generalized Laguerre Polynomials as given in (4.46) which is

convenient for numerically evaluating quantities for physical applications.

Finally, we note that as shown in (4.34) the combination B3 - B3 generally

contains an admixture of the thermal mode solutions A.. For these special
J

parameter values, however, the combination B3 - B3 = Bo, hence it contains no

thermal mode solutions. Physically this indicates that mode conversion does not

occur at these special parameter values.1 5

The asymptotic expressions given for the solutions A. B. and B. areJ' 3 J

defined in certain sectors of the z-plane as given by (3.4) and (4.15). Not all

of these sectors contain the region just above the real axis which is the region

of interest in physical applications. The solutions can be analytically

continued, however, and it is this process which gives rise to the phenomenon of

mode conversion. A solution of either the thermal or cold mode class on one

side of plasma resonance gives rise to a combination of both classes on the

uther side of resonance. Physically the mode conversion process serves to

limit the amplitude of the solutions at plasma resonance. Specifically, the

- solutions of the purely cold plasma (E2 = 0) which exhibit singularities at

the origin now correspond to solutions which are finite at the origin but

produce thermal modes through the mode conversion process which carry wave

energy away form the resonance region. In addition, for special values of the
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parameters, it is possible to construct cold mode class solutions which are

finite at the origin without generating thermal mode class solutions. This

quenching of the mode conversion process corresponds to a change in the topology

of the integration plane in which the branch points become an isolated pole.

I"

!.

- , .. .4- u . . i , ' "
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APPENDIX

A.1 General expression for the derivatives of u(z)

The nth derivative of the function u(a, I, 2,E
2,z) with respect to z,

(n)which we denote as u , can be obtained from the integral represeiitation (2.7).

(n) (aaSI 2,e
2,z) f sn(S-a 2 )c-(s+ 2)a+ exp(-s

3c2/3-sz)ds , (A.1.1)
C

where C is any of the contours discussed in Section 2. To find an expression for

the first derivative we note that

s = (1/4 2)[(s + 2)2 - (s - 2)2], (A.1.2)

I

together with

u(ca+2,6 1+2a 2 ,L 2 ,c 2 ,z) = f (s+a2)2(s+a2)'+(s- 2)a - exp(-s36 2 /3-z-s)ds ; (A.1.3)
C

and

u(oc+2,aj-2=2,B2,E2,Z) f (s-2 )2(S+62) L(s- 2)a - exp(-s 3E2 /3-zs)ds (A.1.4)
C

Using (A.1.1) with n = 1, the expression (A.1.2) together with (A.1.3) and (A.1.4)
S

gives

(1)(c ,6,$ 2,,z) (-1/4F2 )[u(ct+2,f6 1+2 2 ,8 2 ,E 2 ,Z) u(r+2,I , ,091 4 , z
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The second derivative of u can be found in a similar fashion by using the

expression

= (s -2)(s + 2) + (A.1.6)

we then obtain

(2)22_2
0(, 1 , 2 ,c 2 ,z) = u(a+2,l,,2 ,c2z) + 22 u(a,L Z,F2 ,K,z) (A.1.7)

Repeated use of the expression (A.1.7) yields

u (Ot l, 2,C2,z) = n (a+2j, 1, 2,C2,z) (A.1.8)

j=0

where n = 0,1,2,3,... and n= n!/(n-j)!j!, are the binomial coefficients.

Application of (A.1.5) to (A.1.8) then yields

(2n+1)(a,81 ,132 ,c 2 ,z) = (1/4) n n 2(n-j)- i

j=0

[u(ca+2(j+1), j-26 2 ,62 ,:
2 ,z) - u()+2(j+l),Sl+2 ,i>, E

2 ,z)] (A.1.9)

\.7 A series expansion of u in powers of c2

"In this appendix we outline the procedure for obtaining a series expansion

.: '.. .,,z) in powers of E2 and explicitly calculate the first two co-

-..fiients of this series. We first assume that the integrand of (2.7) is an

: itvti tinction of F-2 in the vicinity of c2 = 0 and expand a portion of the
6

0
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integrand in a Taylor's series about the point c2 0. We will discuss the

validity of this assumption later. The integrand of (2.7) depends on C2 in-

directly through the parameters a+,a and directly as exp[-c 2 (s3 /3 + 2

Thus part of the integrand in (2.7) can be written as

(S + a 2 )(+(S - 02)( ' - exp[-6 2 (S 3 /3 + 22S)]

(A.2.1)

(S + B2 )a+(s - 2)- C2{s3/3 + 022s - ( 2
3 /2)£n[(s+)/(s-B2)]}J +.

where we have explicitly shown only the first two terms of the Taylor series

expansion. The parameters a and a are simply the values of a + and a- at e2 = o,

namely,

a+ = a+ (2 = 0) = a/2- 1 + 81/2a2 ; (A.2.2)

a_ = a_(2 = 0) = a/2 - 1 - . (A.2.3)

Using (A.2.1) in (2.7) we obtain

U ,2,2Z f (s - 2) a-(s + 82) a + e - z s ds
C

- £262 2 f S(s - a2)a-(s + 2) a + e-ZSds +(1/ 3 )f S3-(s _2)(+ 2) a  e- ZSds
C C

-(s 2
3 /2)f9n[(s+#2)/(s- 2 )](s+ a 2 )a+( s _ )a - e-ZSds} + .... (A.2.4)

C

q

,II



Noting that

Jlfl[(S +2/( - 2)](S + 2)a+(S 2 $)a~ e-zs ds

*and using (A.1.1) together with (A.1.9) we obtain

I -c
2
/~ 2 ) [1/3]u(a + 4,,+ +20,0Z [1/3 + 32

2]~v

-[1/3]u(ct + 4,,- 2I2, 2,O,z) - [1/3 +2 +]~c +, 2 32,B2 ,O,Z)

- 4' y U(cU,61, 2 ,O,zI)l + . .(A.2.6)

Writing

u U(ca,31,i32 ,O,z) f (s ,)) a_ (S + ) a+ e Ids, \.

we can then express (A.2.6) as

-0 2eZ (Ati ,>, Z) + f'(~

0L-

U( 1 t
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where h(u) is a functional of u and denotes the term in braces in (A.2.6).

That is, once the functions u (which are independent of the magnitude of L)

are known, the behavior of U(U, 1 ,32 ,c
2 ,z) can, at least in principle, be

determined for any value of c2 provided the Taylor series expansion is valid.

For the Taylor series to be valid the functions u0 must be analytic functions

of £2 in the neighborhood of c2 = 0. Furthermore, the coefficients in the Taylor

series must be bounded for all values of z. The functions u are analytic0

functions of E2 only for the contours corresponding to 
the solutions B, B and B.

because these solutions become solutions of the second 
order differential equation

when c2 = 0. On the other hand, u 0integrated along the contours for B, B. and

B. can be singular for certain values of z and the coefficients 
of the Taylor

" -series are not bounded as z approaches these points. In the problem treated here,

for example, singularities in b. and b. can occur at 
the point z = 0 for a > 1.

1 3

In this case the expansion in powers of £2 is valid 
only for z bounded away from

the origin, i.e., IzI > Zo I > 0, for a given z , and for arg z restricted to 
the

appropriate sectors, as given in the text by (4.15).

0o

..

0

.0 ' " " ' m l | ,.,-m
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Figure Captions

Figure 1. Contours corresponding to solutions of (1.3) must proceed to infinity

in the shaded open sectors labeled 1, 2 or 3. The integration plane is cut along

the real axis from $2 to positive infinity and from -,2 to negative infinity. Tle

plane of the paper represents the principal sheet with m = 0, n = 0 in (2.16).

Figure 2. The contours for the solutions A,, A2 and A 3 begin and end at infinity.

The contour for the solution A2 passes onto the adjacent Riemann sheet with m = 1,

n = 0 in (2.16) when crossing the branch cut.

Figure 3(a). The contours for the solutions Bo and B. have at least one endI

point at s = -12. Contours that cross the branch cut pass onto the adjacent

Riemann sheet on which m = 0 and n = I in (2.16) and are shown dashed. The contour

for the solution B3(0,1) starts on the sheet (0,1) and crosses onto the principal sheet.

Figure 3(b). The same as Fig. 3(a) but for the contours corresponding to the

solutions B..
J

Figure 4. Contours for all of the solutions shown in Figs. 2 and 3 are combined

to facilate the derivation of the relations (2.18)-(2.23).

Figure 5. The position of the saddle point used to obtain an asymptotic represen-

tation for the solutions A. is shown as a function of 0 = arg(). The saddle point
j

starts just above the right hand branch cut for 0 = -7 and traces out a circular

path, crossing onto the adjacent m = 1, n = 0 Riemann sheet to end just below the

branch cut Jt '= 37. The contour for the solution Al lies in the (1,0) Riumann

sheet.
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